室蘭工業大学

受 入 可 能 状 況									
受入学科コース	テーマ	担当教員	時期・期間	人数	対象学生	研修内容	備考		
創造工学科建築土木工学コース	受入れ教員が定める研修テーマ (インターンシップ学生が希望する研修内容にマッチしたテーマを定めることを想定している。)								
	具体例 1 建築構造・材料に関する研修	建築構造系教員	8/18(月)〜8/29(金) 受入れ日数:実質5日 対	建築学トラック 10名以内 土木工学トラック 10名以内	建築土木工学系	実験・実習補助			
	具体例2 建築設計・計画に関する研修	建築計画系教員					* 1		
	具体例3 土木構造・地盤に関する研修	土木構造・地盤系教 員					X 1		
	具体例4 土木計画・水理に関する研修	土木計画・水理系教 員							
創造工学科 機械ロボット工学 コース	卓上ロボットマニピュレータの制御実習 卓上ロボットマニピュレータの基礎とプログラミングを学び、物品の搬送やマイ ピュレーションなどの実習課題の作成を補助する。インターンシップを通じて、ロ ボット工学の基礎、プログラミングのスキルを身につけるとともに、実習課題作成を 通じて、身につけた知識やスキルを他人に伝える術について考える。	花島直彦 教授 藤平祥孝 助教	8月後半~9月(要相談) 受入れ日数:実質5日(応相談)	5名以内	特になし	実験・実習補助	* 2		
	マイクロロボットの設計・試作に関する研究を体験する。 ・精密工学会マイクロナノシステム研究専門委員会にて、例年マイクロメカニズムコンテストが行われている。(https://mn. jspe. or. jp/MMcontest/)本コンテストは数cm立方に移動機構を搭載し、制御回路を組み込んで作業させるマイクロロボットを設計、試作し、タイクトライアル競技を行うものである。本コンテスト規格に基づいて、インターンシップを通じて、マイクロロボットを設計、試作し、一連のロボット製作を体験する。	水上雅人 教授	8/19(火)〜8/29(金) 受入れ日数:5日(土日祝を除く)	2名以内	機械工学系 情報工学系 電気電子工学系	実験・実習補助	* 3		
	いずれかのテーマとする。 ・船舶省エネルギー技術に関するCAD、3Dプリンタによる装置設計、計測とデータ解析 ・カーボンニュートラル燃料のエンジン特性 ・熱エネルギーを利用した水素吸蔵合金アクチュエータ ・実験流体力学(高速度カメラを使用した実験)、粒子画像速度測定 ・数値流体力学と構造力学の数値シミュレーションによる連成解析(FSI) ・スラリー流動摩耗に関する実験または混相流数値解析 ・古代船の数値流体シミュレーション ※流体力学・熱力学・工業力学・伝熱工学・統計解析の基礎知識を必要とする。 計測工学の基礎知識を必要とする。 機械工学実験に関する演習を受講しているか、基礎知識を必要とする。	大石義彦 准教授	8月上旬〜9月上旬 受入れ日数:実質5〜10日	2名以内	機械工学系	実験・実習補助	* 4		
創造工学科航空宇宙工学コース	室蘭工大で研究開発中の小型超音速飛行実験機に関する以下の研究項目を体験する。 ・有翼機体の空力設計および空力評価(風洞試験、CFD解析)(流体力学・工業力学の基礎知識を必要とする。) ・有翼機体の飛行シミュレーション(流体力学・工業力学の基礎知識を必要とする。) ・予備的飛行試験用の縮小機体の設計・製作(3D-CADの基礎的運用能力や工作能力を必要とする。) ・緒小機体を用いた走行試験または飛行試験と取得データの解析(工作能力、現場能力、エクセル等を用いたデータ処理を必要とする。) 水素製造技術に関する以下の研究項目を体験する。 ・廃棄物アルミ合金粉末と水との反応により水素を製造する技術に関する研究(流体力学、化学に関する基礎知識を必要とする。) 流れの可視化に関する以下の研究項目を体験する。 ・高速気体流れ場の可視化(研修生のバックグランドによって内容を調整するので、あらかじめ担当教員と相談すること。) 無線技術に関する以下の研究項目を体験する。 ・無人航空機用の無線システムについて実験やシミュレーションでの評価	航空宇宙工学コース教員	7月中旬~9月中旬 (時期・期間はテーマによる。事 前に要相談)	各研究項目に1名ずつ (要相談)	〉機械工学系	実験・実習補助	* 5		
創造工学科電気電子工学コース	・熱電変換材料の超高圧合成と熱電特性評価 再生可能エネルギーの1つである温度差発電に利用される特殊な半導体材料(熱電 変換材料)を大型の高圧プレスを用いて超高圧力下で合成し、その熱電特性を評価す る実験を行う。 ・熱電発電(温度差発電)システムの開発 熱電変換素子を用いた緊急時バックアップ電源用の温度差発電システムの試作を行 い、特性を評価する。	関根ちひろ 教授	7月下旬~8月上旬 受入れ日数:5日(土、日、祝日を 除く)	2名以内	電気電子工学系物質工学系	実験・実習補助			
	劣駆動システムの制御手法の検討 本テーマではロボット工学におけるモデル化、数値シミュレーション方法、ロボット制御方法を体系的に習得することを目標としている。劣駆動システムとして2リンクの鉄棒ロボットを取り上げ、ロボットのダイナミクスを導出した後、シミュレーションによりロボットを制御する手法を検討する。最終的に検討した手法の有効性を実機により確認する。	梶原秀一 教授	8月〜9月 受入れ日数:5日(土、日、祝日を 除く)	2名以内	電気電子工学系	その他			
	・高温超電導物質の合成と特性評価に関する実習 ・高温超電導の臨界電流の測定評価に関する実習 ・FEMによるコイル磁場シミュレーションの実習	金沢新哲 准教授	7月下旬~8月上旬 受入れ日数:実質5日	3名以内	電気電子工学系	実験・実習補助			
	・金属酸化物半導体の結晶成長と評価に関する実習 透明な半導体や太陽電池用の半導体を作製して光学的な特性を評価する。 ・半導体ナノ構造の作製と評価に関する実習 ナノメートルサイズの半導体微細構造を作製してAFMなどを用いて評価する。 ※半導体について勉強した後、クリーンルームに入って試料を作製します。	植杉克弘 准教授	8月~9月 受入れ日数:実質5日	2名以内	電気電子工学系物質工学系	実験・実習補助			
	次世代の磁気デバイスへの応用に向け、近年電気磁気効果が注目されている。 高い電気磁気効果を生み出す磁性材料を見つけるため、日々研究をおこなっており、 関連した実験をおこなう。 ・電気磁気効果を持つ磁性材料の単結晶育成 単結晶育成と試料評価をおこなう。 ・電気磁気効果を持つ磁性材料の電気輸送特性 基本的な特性の一つである輸送特性を電気抵抗率測定により明らかにする。	川村幸裕 准教授	7月下旬~9月上旬 受入れ日数:5日(土、日、祝日を 除く)	2名以内	電気電子工学系 物質工学系	実験・実習補助			
	深層学習を用いた電気機器の特性予測に関するプログラミング実習	佐藤孝洋 准教授	7/28(月)〜8/1(金) 受入れ日数:実質5日	1名以内	情報工学系 電気電子工学系	実験・実習補助	※ 6		

室蘭工業大学

受 入 可 能 状 況										
受入学科 コース	テーマ	担当教員	時期・期間	人数	対象学生	研修内容				
システム理化学科 物理物質システム コース	水素吸蔵合金の作製と特性評価に関する実習 水素エネルギーを貯める材料「水素吸蔵合金」をテーマに、金属を溶かして合金を 作製(合成)し、その性能を評価する実習を行います。数種類の成分を混ぜて合金を つくり、水素を吸ったり放出したりする性質(水素化・脱水素化)を試験します。	亀川厚則 教授	8月~9月 受入れ日数:5~7日(土、日、祝 日を除く)	2名以内	物質工学系	実験・実習補助				
システム理化学科 化学生物システム コース	浮力秤量法による粒子径分布の測定 粒子径分布測定法の歴史、浮力秤量法の開発経緯、数学的理論を理解し、それに基 づいて浮力秤量法によるJIS試験用粉体などの粒径分布測定実験の補助を行う。		8/18(月)~8/22(金)(応相談) 受入れ日数:5日(土日祝除く)	2名以内	物質工学系	実験・実習補助	※ 7			
	天然物質の抽出あるいは簡単な有機合成により準備した有機化合物の生物活性評価を 行います。	上井幸司 准教授	8/18(月)〜9/19(金) (9/10〜9/12 土、日、祝日を除く。期間は要相 談) 受入れ日数:5〜10日(応相談)	3名以内	物質工学系	実験・実習補助	※ 8			
システム理化学科 数理情報システム コース	テーマ:バーチャルリアリティを用いた心理評価実習 概要:本実習では、バーチャルリアリティ (VR) 技術を用いた心理評価の方法について学びます。特に、体験者の心理的反応を引き出すようなVR環境を自ら設計・構築することを主軸とし、「人間中心(ヒューマンオリエンテッド)」の観点から環境の妥当性や影響を評価します。参加者はPC上で様々な環境(例:高所、閉所、対人場面)を構築し、それらがどのように心理状態に影響を与えるかを検証します。VR環境の設計から、実験の実施、データ収集、解析までの一連の流れを体験することで、心理評価におけるVR技術の有用性と課題を総合的に理解することを目的とします。	小林洋介 准教授 寺岡諒 助教	8月~9月 受入れ日数:5~10日(土、日、祝 日を除く)	2~3名以内	情報工学系 電気電子工学系	実験・実習補助				

担当教員連絡先(市外局番:0143)

- 創造工学科建築土木工学コース長 真境名 達哉 教授 電話46-5257 (E:mail:majikina[at]muroran-it.ac.jp)
 - 機械ロボット工学コース長 寺本 孝司 教授 電話46-5320 (E:mail:teramoto[at]muroran-it.ac.jp)
 - 機械ロボット工学コース 花島 直彦 教授 電話46-5350 (E:mail:hana[at]muroran-it.ac.jp)
 - 機械ロボット工学コース 水上 雅人 教授 電話46-5307 (E:mail:m-mizukami[at]muroran-it.ac.jp)
 - 機械ロボット工学コース 大石 義彦 准教授 電話46-5374 (E:mail:oishi[at]muroran-it.ac.jp) 機械ロボット工学コース 藤平 祥孝 助教 電話46-5303 (E:mail:yfuji[at]muroran-it.ac.jp)
 - 航空宇宙工学コース長 廣田 光智 教授 電話46-5367 (E:mail:hirota[at]muroran-it.ac.jp)
 - 電気電子工学コース長 梶原 秀一 教授 電話46-5505 (E:mail:kajiwara[at]muroran-it.ac.jp)
 - 電気電子工学コース 関根ちひろ 教授 電46-5551 (E:mail:sekine[at]muroran-it.ac.jp)
 - 電気電子工学コース 金沢 新哲 准教授 電話46-5650 (E:mail:shintetsu_kanazawa[at]muroran-it.ac.jp)
 - 植杉 克弘 准教授 電話46-5546 (E:mail:uesugi[at]muroran-it.ac.jp) 電気電子工学コース
 - 川村 幸裕 准教授 電話46-5532 (E:mail:y_kawamura[at]muroran-it.ac.jp) 電気電子工学コース 佐藤 孝洋 准教授 電話46-5524 (E:mail:t-sato[at]muroran-it.ac.jp) 電気電子工学コース
- システム理化学科物理物質システムコース長 戎 修二 教授 電話46-5620 (E:mail:ebisu[at]muroran-it.ac.jp) 物理物質システムコース 亀川 厚則 教授 電話46-5642 (E:mail:kamegawa[at]muroran-it.ac.jp)

 - 化学生物システムコース長 飯森 俊文 教授 電話46-5767 (E:mail:iimori[at]muroran-it.ac.jp) 化学生物システムコース 大平 勇一 教授 電話46-5768 (E:mail:ohira[at]muroran-it.ac.jp)
 - 化学生物システムコース 上井 幸司 准教授 電話46-5775 (E:mail:uwai[at]muroran-it.ac.jp)
 - 数理情報システムコース 岡田 吉史 教授 電話46-5421 (E:mail:okada[at]muroran-it.ac.jp)
 - 数理情報システムコース 小林 洋介 准教授 電話46-5440 (E:mail:ykobayashi[at]muroran-it.ac.jp)
 - 数理情報システムコース 寺岡 諒 助教 電話46-5498 (E:mail:teraoka [at] muroran-it.ac.jp)

(送信時は[at]を@に変更してください。) その他受入条件等

- 作業服、内履きを持参すること。 **※**1
- ※2 パソコンの操作ができること。必須ではないが画像処理の基本的な知識があるとよい。
- ※3 製図の基礎知識、3DCADの使用経験を必要とする。 3Dプリンタの使用経験があれば望ましい。

マイコン(Arduino、ラズパイなど)の使用経験があれば望ましい。

- 研修テーマは高度(大学の卒業研究レベル)ですが高専の本科4年生、専攻科生の受け入れ可能です。
 - 基礎知識によって内容が変わりますので事前相談してください。

専用の実験ノート、安全靴の用意をお願いします。PC等は貸し出ししますので不要ですが、セキュリティ上、持参するPCで作業したい場合は事前に申し出がなければ使用できません。 研修テーマが高度(大学の卒業研究レベル)であるため、高専の専攻科在籍生に限ります。

- 十分な性能のノートPCを持参することが望ましい。 (Windows10 以上のOS) なお、持参PC を本学の学内ネットワークに接続するには、本学所定のセキュリティソフトをインストールすることが必須です。
- ただし、研修テーマによっては、セキュリティの観点から貸与PCの使用に限定する場合もあります。
- 各研修テーマの担当教員と各種調整が必要ですので、希望研修テーマ、希望研修期間、予備知識等について、応募前にご相談ください。
- ※6 内履きを持参すること。C++/Pythonの基本知識を有すること。電気機器に関する基礎知識があればなお良い。
- 測定理論を理解してもらうためには、数学・物理学はもとより、粉体に関する知識を有していることが望ましい。
- 専攻科学生の場合の受入れ期間は8月18日(月)~8月29日(金)(応相談)。 化学や生化学に興味を有する方が望ましい。白衣、保護メガネを持参すること。
- 受け入れ日程や提示テーマ以外については事前に相談願います。事前にメールでの打ち合わせをお願いします。連絡先:uwai [at] muroran-it.ac.jp (※送信時は[at]を@に変更してください。)